Pencarian

Tuesday, March 8, 2016

ARTIKEL GELOMBANG ELEKTROMAGNETIK



GELOMBANG ELEKTROMAGNETIK

Gelombang Elektromagnetik adalah gelombang yang dapat merambat  walau tidak ada medium. Energi elektromagnetik merambat dalam gelombang dengan beberapa karakter yang bisa diukur, yaitu: panjang gelombang/wavelength, frekuensi, amplitude/amplitude, kecepatan. Amplitudo adalah tinggi gelombang, sedangkan panjang gelombang adalah jarak antara dua puncak. Frekuensi adalah jumlah gelombang yang melalui suatu titik dalam satu satuan waktu. Frekuensi tergantung dari kecepatan merambatnya gelombang. Karena kecepatan energi elektromagnetik adalah konstan (kecepatan cahaya), panjang gelombang dan frekuensi berbanding terbalik. Semakin panjang suatu gelombang, semakin rendah frekuensinya, dan semakin pendek suatu gelombang semakin tinggi frekuensinya.
Energi elektromagnetik dipancarkan, atau dilepaskan, oleh semua masa di alam semesta pada level yang berbedabeda. Semakin tinggi level energi dalam suatu sumber energi, semakin rendah panjang gelombang dari energi yang dihasilkan, dan semakin tinggi frekuensinya. Perbedaan karakteristik energi gelombang digunakan untuk mengelompokkan energi elektromagnetik.

Ciri-ciri gelombang elektromagnetik :
Dari uraian tersebut diatas dapat disimpulkan beberapa ciri gelombang elektromagnetik adalah sebagai berikut:
1.      Perubahan medan listrik dan medan magnetik terjadi pada saat yang bersamaan, sehingga kedua medan memiliki harga maksimum dan minimum pada saat yang sama dan pada tempat yang sama.
2.      Arah medan listrik dan medan magnetik saling tegak lurus dan keduanya tegak lurus terhadap arah rambat gelombang.

3.      Dari ciri no 2 diperoleh bahwa gelombang elektromagnetik merupakan gelombang transversal.
4.      Seperti halnya gelombang pada umumnya, gelombang elektromagnetik mengalami peristiwa pemantulan, pembiasan, interferensi, dan difraksi. Juga mengalami peristiwa polarisasi karena termasuk gelombang transversal.
5.      Cepat rambat gelombang elektromagnetik hanya bergantung pada sifat-sifat listrik dan magnetik medium yang ditempuhnya.


A.    TEORI GELOMBANG ELEKTROMAGNETIK               
Pada pertengahan abad ke sepuluh seorang ilmuwan Mesir di Iskandaria yang bernama Al Hasan (965-1038) mengemukakan pendapat bahwa mata dapat melihat benda-benda di sekeliling karena adanya cahaya yang dipancarkan atau dipantulkan oleh benda-benda yang bersangkutan masuk ke dalam mata. Teori ini akhirnya dapat diterima oleh orang banyak sampai sekarang ini.
Beberapa teori-teori yang mendukung pendapat Al Hasan diantaranya adalah:
1.      Teori Emisi atau Teori Partikel Sir Isaac Newton (1642-1727)
Merupakan ilmuwan berkebangsaan Inggris yang mengemukakan pendapat bahwa dari sumber cahaya dipancarkan partikel-partikel yang sangat kecil dan ringan ke segala arah dengan kecepatan yang sangat besar. Bila partikel-partikel ini mengenai mata, maka manusia akan mendapat kesan melihat benda tersebut.
Alasan dikemukakanya teori ini adalah sebagai berikut:
a)      Karena partikel cahaya sangat ringan dan berkecepatan tinggi maka cahaya dapat merambat lurus tanpa terpengaruh gaya gravitasi bumi.
b)      Ketika cahaya mengenai permukaan yang halus maka cahaya akan akan dipantulkan dengan sudut sinar datang sama dengan sudut sinar pantul sehingga sesuai dengan hukum pemantulan Snellius. Peristiwa pemantulan ini dijelaskan oleh Newton dengan menggunakan bantuan sebuah bola yang dipantulkan di atas bidang pantul.
c)      Alasan berikutnya adalah pada peristiwa pembiasan cahaya yang disamakan dengan peristiwa menggelindingnya sebuah bola pada papan yang berbeda ketinggian yang dihubungkan dengan sebuah bidang miring. Dari permukaan yang lebih tinggi bola digelindingkan dan akan terus menggelinding melalui bidang miring sampai akhirnya bola akan menggelinding di permukaan yang lebih rendah. Jika diamati perjalanan bola, maka sebelum melewati bidang miring lintasan bola akan membentuk sudut α terhadap garis tegak lurus pada bidang miring. Setelah melewati bidang miring lintasan bola akan membentuk sudut β terhadap garis tegak lurus pada bidang miring. Jika permukaan atas dianggap sebagai udara dan permukaan bawah dianggap sebagai air serta bidang miring merupakan batas antara udara dan air, gerak bola dianggap sebagai jalannya pembiasan cahaya dari udara ke air, maka Newton menganggap bahwa kecepatan cahaya dalam air lebih besar dari pada kecepatan cahaya dalam udara.
Pendapat ini masih bertahan hingga akhirnya seorang ahli fisika Prancis, Jean Focault (1819 – 1868) melakukan percobaan tentang pengukuran kecepatan cahaya dalam berbagai medium. Dalam percobaannya Jeans Focault mendapatkan kesimpulan bahwa kecepatan cahaya dalam air lebih kecil dari pada kecepatan cahaya dalam udara.

2.      Teori Gelombang


Menurut Christian Huygens (1629-1695) seorang ilmuwan berkebangsaan Belanda, bahwa cahaya pada dasarnya sama dengan bunyi dan berupa gelombang. Perbedaan cahaya dan bunyi hanya terletak pada panjang gelombang dan frekuensinya.
Pada teori ini Huygens menganggap bahwa setiap titik pada sebuah muka gelombang dapat dianggap sebagai sebuah sumber gelombang yang baru dan arah muka gelombang ini selalu tegak lurus tehadap muka gelombang yang bersangkutan.
Pada teori Huygens ini peristiwa pemantulan, pembiasan, interferensi, ataupun difraksi cahaya dapat dijelaskan secara tepat, namun dalam teori Huygens ada kesulitan dalam penjelasan tentang sifat cahaya yang merambat lurus.

3.      Teori Elektromagnetik

Percobaan James Clerk Maxwell (1831 – 1879) seorang ilmuwan berkebangsaan Inggris (Scotlandia) menyatakan bahwa cepat rambat gelombang elektromagnetik sama dengan cepat rambat cahaya yaitu 3×108 m/s, oleh karena itu Maxwell berkesimpulan bahwa cahaya merupakan gelombang elektromagnetik. Kesimpulan Maxwell ini di dukung oleh :
a)      Seorang ilmuwan berkebangsaan Jerman, Heinrich Rudolph Hertz (1857 – 1894) yang membuktikan bahwa gelombang elektromagnetik merupakan gelombang tranversal. Hal ini sesuai dengan kenyataan bahwa cahaya dapat menunjukkan gejala polarisasi.
b)      Percobaan seorang ilmuwan berkebangsaan Belanda, Peter Zeeman (1852 – 1943) yang menyatakan bahwa medan magnet yang sangat kuat dapat berpengaruh terhadap berkas cahaya.
c)      Percobaan Stark (1874 – 1957), seorang ilmuwan berkebangsaan Jerman yang mengungkapkan bahwa medan listrik yang sangat kuat dapat mempengaruhi berkas cahaya.





4.      Teori Kuantum

Teori kuantum pertama kali dicetuskan pada tahun 1900 oleh seorang ilmuwan berkebangsaan Jerman yang bernama Max Karl Ernst Ludwig Planck (1858 – 1947). Dalam percobaannya Planck mengamati sifat-sifat termodinamika radiasi benda-benda hitam hingga ia berkesimpulan bahwa energi cahaya terkumpul dalam paket-paket energi yang disebut kuanta atau foton. Dan pada tahun 1901 Planck mempublikasikan teori kuantum cahaya yang menyatakan bahwa cahaya terdiri dari peket-paket energi yang disebut kuanta atau foton. Akan tetapi dalam teori ini paket-paket energi atau partikel penyusun cahaya yang dimaksud berbeda dengan partikel yang dikemukakan oleh Newton . Karena foton tidak bermassa sedangkan partikel pada teori Newton memiliki massa
Pernyataan Planck ternyata mendapat dukungan dengan adanya percobaan Albert Einstein pada tahun 1905 yang berhasil menerangkan gejala fotolistrik dengan menggunakan teori Planck. Fotolistrik adalah peristiwa terlepasnya elektron dari suatu logam yang disinari dengan panjang gelombang tertentu. Akibatnya percobaan Einstein justru bertentangan dengan pernyataan Huygens dengan teori gelombangnya.Pada efek fotolistrik, besarnya kecepatan elektron yang terlepas dari logam ternyata tidak bergantung pada besarnya intensitas cahaya yang digunakan untuk menyinari logam tersebut. Sedangkan menurut teori gelombang seharusnya energi kinetik elektron bergantung pada intensitas cahaya.
Kemudian dari seluruh teori-teori cahaya yang muncul dapat disimpulkan bahwa cahaya mempunyai sifat dual (dualisme cahaya) yaitu cahaya dapat bersifat sebagai gelombang untuk menjelaskan peristiwa interferensi dan difraksi tetapi di lain pihak cahaya dapat berupa materi tak bermassa yang berisikan paket-paket energi yang disebut kuanta atau foton sehingga dapat menjelaskan peristiwa efek fotolistrik.
Gelombang Elektromagnetik
Beberapa kaidah tentang kemagnetan dan kelistrikan yang mendukung perkembangan konsep gelombang elektromagnetik antara lain:
a)      Hukum Coulomb mengemukakan : “Muatan listrik statik dapat menghasilkan medan listrik.”.
b)      Hukum Biot & Savart mengemukakan : “Aliran muatan listrik (arus listrik) dapat menghasilkan medan magnet”.
c)      Hukum Faraday mengemukakan : “Perubahan medan magnet dapat menghasilkan medan listrik”.
Berdasarkan Hukum Faraday, Maxwell mengemukakan hipotesa sebagai berikut: “Perubahan medan listrik dapat menimbulkan medan magnet”. Hipotesa ini sudah teruji dan disebut dengan Teori Maxwell. Inti teori Maxwell mengenai gelombang elektromagnetik adalah:
a)      Perubahan medan listrik dapat menghasilkan medan magnet.
b)      dan permeabilitas (μ) zat.eCahaya termasuk gelombang elektromagnetik. Cepat rambat gelombang elektromagnetik (c) tergantung dari permitivitas (
Menurut Maxwell, kecepatan rambat gelombang elektromagnetik dirumuskan sebagai berikut c = Ternyata perubahan medan listrik menimbulkan medan magnet yang tidak tetap besarannya atau berubah-ubah. Sehingga perubahan medan magnet tersebut akan menghasilkan lagi medan listrik yang berubah-ubah. sama dan menjalar kesegala arah. Arah getar vektor medan listrik dan medan magnet saling tegak lurus. Jadi gelombang elektromagnetik adalah gelombang yang dihasilkan dari perubahan medan magnet dan medan listrik secara berurutan, dimana arah getar vektor medan listrik dan medan magnet saling tegak lurus.-Proses terjadinya medan listrik dan medan magnet berlangsung secara bersama
E = medan listrik (menjalar vertikal)
B = medan magnet (menjalar horizontal.)
Gejala seperti ini disebut terjadinya gelombang elektromagnetik (= gelombang yang mempunyai medan magnet dan medan listrik).
Bila dalam kawat PQ terjadi perubahan-perubahan tegangan baik besar maupun arahnya, maka dalam kawat PQ elektron bergerak bolak-balik, dengan kata lain dalam kawat PQ terjadi getaran listrik. Perubahan tegangan menimbulkan perubahan medan listrik dalam ruangan disekitar kawat, sedangkan perubahan arus listrik menimbulkan perubahan medan magnet. Perubahan medan listrik dan medan magnet itu merambat ke segala jurusan.
Karena rambatan perubahan medan magnet dan medan listrik secara periodik maka rambatan perubahan medan listrik dan medan magnet lazim disebut gelombang elektromagnetik. (GEM) Percobaan-percobaan yang teliti membawa kesimpulan :
a)      Pola gelombang elektromagnetik sama dengan pola gelombang transversal dengan vektor perubahan medan listrik tegak lurus pada vektor perubahan medan magnet.
b)      Gelombang elektromagnetik menunjukkan gejala-gejala pemantulan, pembiasan, difraksi, polarisasi seperti halnya pada cahaya.
c)      Diserap oleh konduktor dan diteruskan oleh isolator.
Gelombang elektromagnetik lahir sebagai paduan daya imajinasi dan ketajaman akal pikiran berlandaskan keyakinan akan keteraturan dan kerapian aturan-aturan alam.

Hasil-hasil percobaan yang mendahuluinya telah mengungkapkan tiga aturan gejala kelistrikan , antara lain sebagai berikut. Hukum Coulomb : Muatan listrik menghasilkan medan listrik yang kuat.
Hukum Biot-Savart : Aliran muatan (arus) listrik menghasilkan medan magnet disekitarnya.
Hukum Faraday : Perubahan medan magnet (B) dapat menimbulkan medan listrik (E).
Didorong oleh keyakinan atas keteraturan dan kerapian hukum-hukum alam, Maxwell berpendapat bahwa masih ada kekurangan satu aturan kelistrikan yang masih belum terungkap secara empirik. Jika perubahan medan magnet dapat menimbulkan perubahan medan listrik maka perubahan medan listrik pasti dapat menimbulkan perubahan medan magnet, demikianlah keyakinan Maxwell.
Dengan pengetahuan matematika yang dimilikinya, secara cermat Maxwell membangun teori yang dikenal sebagai teori gelombang elektromagnetik. Baru setelah bertahun-tahun Maxwell tiada, teorinya dapat diuji kebenarannya melalui percobaan-percobaan. Menurut perhitungan secara teoritik, kecepatan gelombang elektromagnetik hanya bergantung pada permitivitas ruang hampa ( εo) dan permeabilitas ruang hampa (µo ).
7 Wb/A.m-12 C2/N.m2 dan μo = 4π.10-Dengan memasukkan εo= 8,85 . 10 diperoleh nilai c = 3.108 m/s, nilai yang sama dengan kecepatan cahaya.


Oleh sebab itu Maxwell mempunyai cukup alasan untuk menganggap cahaya adalah gelombang elektromagnetik. Oleh karena itu konsep gelombang elektromagnetik ini merupakan penyokong teori Huygens tentang cahaya sebagai gerak gelombang.
Cahaya yang tampak oleh mata bukan semata jenis yang memungkinkan radiasi elektromagnetik. Pendapat James Clerk Maxwell menunjukkan bahwa gelombang elektromagnetik lain, berbeda dengan cahaya yang tampak oleh mata dalam dia punya panjang gelombang dan frekuensi, bisa saja ada. Kesimpulan teoritis ini secara mengagumkan diperkuat oleh Heinrich Hertz, yang sanggup menghasilkan dan menemui kedua gelombang yang tampak oleh mata yang diramalkan oleh Maxwell itu. Beberapa tahun kemudian Guglielmo Marconi memperagakan bahwa gelombang yang tak terlihat mata itu dapat digunakan buat komunikasi tanpa kawat sehingga menjelmalah apa yang namanya radio itu. Kini, kita gunakan juga buat televisi, sinar X, sinar gamma, sinar infra, sinar ultraviolet adalah contoh-contoh dari radiasi elektromagnetik. Semuanya bisa dipelajari lewat hasil pemikiran Maxwell.

Sumber Gelombang Elektromagnetik
1.      Osilasi listrik.
2.      Sinar matahari ® menghasilkan sinar infra merah.
3.      Lampu merkuri ® menghasilkan ultra violet.
4.      Penembakan elektron dalam tabung hampa pada keping logam ® menghasilkan sinar X(digunakan untuk rontgen). Inti atom yang tidak stabil  menghasilkan sinar gamma.







B.     SPEKTRUM GELOMBANG ELEKTROMAGNETIK
Susunan semua bentuk gelombang elektromagnetik berdasarkan panjang gelombang dan frekuensinya disebut spektrum elektromagnetik. Gambar spectrum elektromagnetik di bawah disusun berdasarkan panjang gelombang (diukur dalam satuan _m) mencakup kisaran energi yang sangat rendah, dengan panjang gelombang tinggi dan frekuensi rendah, seperti gelombang radio sampai ke energi yang sangat tinggi, dengan panjang gelombang rendah dan frekuensi tinggi seperti radiasi X-ray dan Gamma Ray.
Contoh spektrum elektromagnetik
1.      Gelombang Radio
Gelombang radio dikelompokkan menurut panjang gelombang atau frekuensinya. Jika panjang gelombang tinggi, maka pasti frekuensinya rendah atau sebaliknya. Frekuensi gelombang radio mulai dari 30 kHz ke atas dan dikelompokkan berdasarkan lebar frekuensinya. Gelombang radio dihasilkan oleh muatan-muatan listrik yang dipercepat melalui kawat-kawat penghantar. Muatan-muatan ini dibangkitkan oleh rangkaian elektronika yang disebut osilator. Gelombang radio ini dipancarkan dari antena dan diterima oleh antena pula. Kamu tidak dapat mendengar radio secara langsung, tetapi penerima radio akan mengubah terlebih dahulu energi gelombang menjadi energi bunyi.

2.      Gelombang mikro
Gelombang mikro (mikrowaves) adalah gelombang radio dengan frekuensi paling tinggi yaitu diatas 3 GHz. Jika gelombang mikro diserap oleh sebuah benda, maka akan muncul efek pemanasan pada benda itu. Jika makanan menyerap radiasi gelombang mikro, maka makanan menjadi panas dalam selang waktu yang sangat singkat. Proses inilah yang dimanfaatkan dalam microwave oven untuk memasak makanan dengan cepat dan ekonomis.
Gelombang mikro juga dimanfaatkan pada pesawat RADAR (Radio Detection and Ranging) RADAR berarti mencari dan menentukan jejak sebuah benda dengan menggunakan gelombang mikro. Pesawat radar memanfaatkan sifat pemantulan gelombang mikro. Karena cepat rambat glombang elektromagnetik c = 3 X 108 m/s, maka dengan mengamati selang waktu antara pemancaran dengan penerimaan.

3.      Sinar Inframerah
Sinar inframerah meliputi daerah frekuensi 1011Hz sampai 1014 Hz atau daerah panjang gelombang 10-4 cm sampai 10-1 cm. jika kamu memeriksa spektrum yang dihasilkan oleh sebuah lampu pijar dengan detektor yang dihubungkan pada miliampermeter, maka jarum ampermeter sedikit diatas ujung spektrum merah.
Sinar yang tidak dilihat tetapi dapat dideteksi di atas spektrum merah itu disebut radiasi inframerah. Sinar infamerah dihasilkan oleh elektron dalam molekul-molekul yang bergetar karena benda diipanaskan. Jadi setiap benda panas pasti memancarkan sinar inframerah. Jumlah sinar inframerah yang dipancarkan bergantung pada suhu dan warna benda. 

4.      Cahaya tampak
Cahaya tampak sebagai radiasi elektromagnetik yang paling dikenal oleh kita dapat didefinisikan sebagai bagian dari spektrum gelombang elektromagnetik yang dapat dideteksi oleh mata manusia. Panjang gelombang tampak nervariasi tergantung warnanya mulai dari panjang gelombang kira-kira 4 x 10-7 m untuk cahaya violet (ungu) sampai 7x 10-7 m untuk cahaya merah. Kegunaan cahaya salah satunya adlah penggunaan laser dalam serat optik pada bidang telekomunikasi dan kedokteran.

5.      Sinar ultraviolet 
Sinar ultraviolet mempunyai frekuensi dalam daerah 1015 Hz sampai 1016 Hz atau dalam daerah panjang gelombagn 10-8 m 10-7 m. gelombang ini dihasilkan oleh atom dan molekul dalam nyala listrik. Matahari adalah sumber utama yang memancarkan sinar ultraviolet dipermukaan bumi,lapisan ozon yang ada dalam lapisan atas atmosferlah yang berfungsi menyerap sinar ultraviolet dan meneruskan sinar ultraviolet yang tidak membahayakan kehidupan makluk hidup di bumi.

6.      Sinar X 
Sinar X mempunyai frekuensi antara 10 Hz sampai 10 Hz . panjang gelombangnya sangat pendek yaitu 10 cm sampai 10 cm. meskipun seperti itu tapi sinar X mempunyai daya tembus kuat, dapat menembus buku tebal, kayu tebal beberapa sentimeter dan pelat aluminium setebal 1 cm.    

7.      Sinar Gamma
Sinar gamma mempunyai frekuensi antara 10 Hz sampai 10 Hz atau panjang gelombang antara 10 cm sampai 10 cm. Daya tembus paling besar, yang menyebabkan efek yang serius jika diserap oleh jaringan tubuh. 

Contoh penerapan gelombang elektromagnetik dalam kehidupan sehari-hari : 
1.      Radio
Radio energi adalah bentuk level energi elektromagnetik terendah, dengan kisaran panjang gelombang dari ribuan kilometer sampai kurang dari satu meter. Penggunaan paling banyak adalah komunikasi, untuk meneliti luar angkasa dan sistem radar. Radar berguna untuk mempelajari pola cuaca, badai, membuat peta 3D permukaan bumi, mengukur curah hujan, pergerakan es di daerah kutub dan memonitor lingkungan. Panjang gelombang radar berkisar antara 0.8 – 100 cm.

2.      Microwave
Panjang gelombang radiasi microwave berkisar antara 0.3 – 300 cm. Penggunaannya terutama dalam bidang komunikasi dan pengiriman informasi melalui ruang terbuka, memasak, dan sistem PJ aktif. Pada sistem PJ aktif, pulsa microwave ditembakkan kepada sebuah target dan refleksinya diukur untuk mempelajari karakteristik target. Sebagai contoh aplikasi adalah Tropical Rainfall Measuring Mission’s (TRMM) Microwave Imager (TMI), yang mengukur radiasi microwave yang dipancarkan dari Spektrum elektromagnetik Energi elektromagnetik atmosfer bumi untuk mengukur penguapan, kandungan air di awan dan intensitas hujan.

3.      Infrared
Kondisi-kondisi kesehatan dapat didiagnosis dengan menyelidiki pancaran inframerah dari tubuh. Foto inframerah khusus disebut termogram digunakan untuk mendeteksi masalah sirkulasi darah, radang sendi dan kanker. Radiasi inframerah dapat juga digunakan dalam alarm pencuri. Seorang pencuri tanpa sepengetahuannya akan menghalangi sinar dan menyembunyikan alarm. Remote control berkomunikasi dengan TV melalui radiasi sinar inframerah yang dihasilkan oleh LED ( Light Emiting Diode ) yang terdapat dalam unit, sehingga kita dapat menyalakan TV dari jarak jauh dengan menggunakan remote control.

4.      Ultraviolet
Sinar UV diperlukan dalam asimilasi tumbuhan dan dapat membunuh kuman-kuman penyakit kulit.

5.      Sinar X
Sinar X ini biasa digunakan dalam bidang kedokteran untuk memotret kedudukan tulang dalam badan terutama untuk menentukan tulang yang patah. Akan tetapi penggunaan sinar X harus hati-hati sebab jaringan sel-sel manusia dapat rusak akibat penggunaan sinar X yang terlalu lama.





C.    KESIMPULAN
Dari pembahasan di atas, dapat disimpulkan bahwa begitu besar peranan gelombang elektromagnetik yang bermanfaat dalam kehidupan kita sehari-hari, tanpa kita sadari keberadaannya.
Spektrum elektromagnetik adalah rentang semua radiasi elektromagnetik yang mungkin. Spektrum elektromagnetik dapat dijelaskan dalam panjang gelombang, frekuensi, atau tenaga per foton. Spektrum ini secara langsung berkaitan :
1.      Panjang gelombang dikalikan dengan frekuensi ialah kecepatan cahaya: 300 Mm/s, yaitu 300 MmHz
2.      Energi dari foton adalah 4.1 feV per Hz, yaitu 4.1µeV/GHz
3.      Panjang gelombang dikalikan dengan energy per foton adalah 1.24 µeVm
Spektrum elektromagnetik dapat dibagi dalam beberapa daerah yang terentang dari sinar gamma gelombang pendek berenergi tinggi sampai pada gelombang mikro dan gelombang radio dengan panjang gelombang sangat panjang. Pembagian ini sebenarnya tidak begitu tegas dan tumbuh dari penggunaan praktis yang secara historis berasal dari berbagai macam metode deteksi.
Biasanya dalam mendeskripsikan energi spektrum elektromagnetik dinyatakan dalam elektronvolt untuk foton berenergi tinggi (di atas 100 eV), dalam panjang gelombang untuk energi menengah, dan dalam frekuensi untuk energi rendah (? = 0,5 mm). Istilah “spektrum optik” juga masih digunakan secara luas dalam merujuk spektrum elektromagnetik, walaupun sebenarnya hanya mencakup sebagian rentang panjang gelombang saja (320 – 700 nm)[1].
Dan beberapa contoh spektrum elektromagnetik seperti : Radar (Radio Detection And Ranging),digunakan sebagai pemancar dan penerima gelombang.
Infra Merah Dihasilkan dari getaran atom dalam bahan dan dimanfaatkan untuk mempelajari struktur molekul
Sinar tampak mempunyai panjang gelombang 3990 Aº – 7800 Aº.
Ultra ungu dimanfaatkan untuk pengenalan unsur suatu bahan dengan teknik spektroskopi.
DAFTAR PUSTAKA

3.      http://www.scribd.com/doc/16680182/gelombang-elektromagnetik







No comments:

Pencarian isi Blog