Pencarian

Saturday, November 1, 2014

MAKALAH MATEMATIKA " IRISAN KERUCUT "



BAB I
PENDAHULUAN


A.    LATAR BELAKANG
Irisan kerucut dapat didefinisikan sebagai: tempat kedudukan titik-titik pada sebuah bidang, sedemikian, sehingga jarak titik-titik tersebut ke sebuah titik tetap F (yang disebut fokus) memiliki rasio yang konstan terhadap jarak titik-titik tersebut ke sebuah garis tetap L (disebut direktriks) yang tidak mengandung F.
Irisan kerucut adalah lokus dari semua titik yang membentuk kurva dua-dimensi, yang terbentuk oleh irisan sebuah kerucut dengan sebuah bidang. Empat jenis yang dapat terjadi adalah Lingkaran,  Parabola, Elips, dan Hiperbola.
Dalam memahami geometri irisan kerucut, sebuah kerucut dianggap memiliki dua kulit yang membentang sampai tak berhingga di kedua arah. Sebuah generator adalah sebuah garis yang dapat dibuat pada kulit kerucut, dan semua generator saling berpotongan di satu titik yang disebut verteks kerucut.

B.     RUMUSAN MASALAH
1.      Apa yang dimaksud dengan Irisan Kerucut?
2.      Apa yang terjadi jika kerucut diiris dalam berbagai arah?
3.      Bagaimana persamaan yang terdapat dalam Lingkaran?
4.      Bagaimana persamaan yang terdapat dalam Elips?
5.      Bagaimana persamaan yang terdapat dalam Parabola?
6.      Bagaimana persamaan yang terdapat dalam Hiperbola?

 
C.    TUJUAN
1.      Mengetahui arti dari Irisan Kerucut.
2.      Mengetahui bentuk-bentuk irisan kerucut.
3.      Mengetahui persamaan Lingkaran.
4.      Mengetahui persamaan Elips.
5.      Mengetahui persamaan Parabola.
6.      Mengetahui persamaan Hiperbola.





BAB II
PEMBAHASAN
Dalam matematika, irisan kerucut adalah lokus dari semua titik yang membentuk kurva dua-dimensi, yang terbentuk oleh irisan sebuah kerucut dengan sebuah bidang. Dalam memahami geometri irisan kerucut, sebuah kerucut dianggap memiliki dua kulit yang membentang sampai tak berhingga di kedua arah. Sebuah generator adalah sebuah garis yang dapat dibuat pada kulit kerucut, dan semua generator saling berpotongan di satu titik yang disebut verteks kerucut.
Secara geometri analitis, irisan kerucut dapat didefinisikan sebagai: tempat kedudukan titik-titik pada sebuah bidang, sedemikian, sehingga jarak titik-titik tersebut ke sebuah titik tetap F (yang disebut fokus) memiliki rasio yang konstan terhadap jarak titik-titik tersebut ke sebuah garis tetap L (disebut direktriks) yang tidak mengandung F.
Eksentrisitas adalah rasio antara FM dan M'M. Elips (e=1/2), parabola (e=1) dan hiperbola (e=2) dengan fokus (F) dan direktriks yang tetap.

Rasio yang konstan tersebut disebut eksentrisitas, dilambangkan dengan e, dan merupakan bilangan non-negatif. Untuk e = 0, irisan kerucut tersebut adalah lingkaran, e < 1 sebuah elips, e = 1 sebuah parabola, dan e > 1 sebuah hiperbola.


Geometri irisan kerucut dan jenis-jenisnya
 
v  Jika sebuah bidang mengiris kerucut sejajar dengan satu dan hanya satu generator, maka irisannya adalah parabola.
v  Jika bidang pengiris sejajar dengan dua generator, maka irisannya akan memotong kedua kulit dan membentuk sebuah hiperbola.
v  Sebuah elips terjadi jika bidang pengiris tidak sejajar dengan generator mana pun.
v  Lingkaran adalah kasus khusus dari elips, yang terbentuk jika bidang pengiris memotong semua generator dan tegak lurus sumbu kerucut.
Dalam koordinat kartesius, grafik dari persamaan kuadrat dengan dua variabel selalu menghasilkan irisan kerucut, dan semua irisan kerucut dapat dihasilkan dengan cara ini.
Jika terdapat persamaan dengan bentuk:
ax2 + 2hxy + by2 + 2gx + 2fy + c = 0
maka:
§      Jika h2 = ab, persamaan ini menghasilkan parabola.
§      Jika h2 < ab, persamaan ini menghasilkan elips.
§      Jika h2 > ab, persamaan ini menghasilkan hiperbola.
§      Jika a = b and h = 0, persamaan ini menghasilkan lingkaran.
§      Jika a + b = 0, persamaan ini menghasilkan hiperbola persegi.
A.    LINGKARAN
Lingkaran didefinisikan sebagai tempat kedudukan atau lokus titik-titik P(x,y) yang jaraknya r sampai suatu titik M yang dinamakan pusat lingkaran adalah sama.
Persamaan lingkaran menjadi sederhana bila pusat lingkaran berimpit dengan asal O. Berlaku hokum Pythagoras x2 + y2 = r2

Bila pusat lingkaran dipindahkan dari O ke M(h,k), maka juga dengan hukum pythagoras diperleh persamaan lingkaran :
(x – h)2 + (y – k)2 = r2
x à (x – h), y à (y – k)
Dapat ditulis
x2 + y2 - 2hx - 2ky + (h2+k2+r2)=0
h dan k bisa positif / negatif à persamaan lingkaran :
Ax2 + Ay2 + Dx + Ey + F = 0                      A = C dan B = 0

B. ELIPS
Elips adalah tempat kedudukan titik-titik yang jumlah jaraknya terhadap dua titik tertentu adalah tetap. Kedua titik tertentu itu disebut titik focus.




 










Dari gambar diatas, titik F1 dan F2 dan adalah titik focus elips dan A, B, C, D adalah titik puncak elips. Elips mempunyai dua sumbu simetri, yaitu :
1.      Garis yang memuat fokus dinamakan sumbu mayor. Pada gambar, sumbu mayor elips adalah AB.
2.      Garis yang tegak lurus sumbu mayor di titik tengah disebut sumbu minor. Pada gambar , sumbu minor elips adalah CD. Sedangkan titik potong kedua sumbu elips itu disebut pusat elips.

Elips juga didefinisikan sebagai tempat kedudukan titik-titik yang perbandingan jaraknya terhadap suatu titik dan suatu garis yang diketahui besarnya tetap. ( e < 1 ). Titik itu disebut fokus dan garis tertentu itu disebut direktriks.

Gambar diatas menunjukkan sebuah elips dengan :
¨      Pusat elips O(0,0)
¨      Sumbu simetri adalah sumbu x dan sumbu y
¨      Fokus F1 (-c,0) dan F2 (c,0)
¨      Sumbu mayor pada sumbu x, puncak A(-a,0) dan B(a,0) , panjang sumbu mayor = 2a
¨      Sumbu minor pada sumbu y, puncak C(0,b) dan D(0,-b) , panjang sumbu minor = 2b
¨      Eksentrisitas :
¨      Direktriks :  atau

¨      Panjang lactus rectum

*      Persamaan Elips
Berikut ini akan diberikan persamaan elips berdasarkan letak titik pusat elips.
a)      Persamaan elips yang berpusat di O(0,0)
Selain diketahui pusat elipsnya, persamaan elips juga ditentukan dari titik fokusnya.
©      Persamaan elips yang berfokus pada sumbu x,


Text Box:
 





Dengan :    - Pusat (0,0)
                  - Fokus F1 (-c,0) dan F2 (c,0)

©      Persamaan elips yang berfokus pada sumbu y,


Text Box:
 





Dengan :    - Pusat (0,0)
                  - Fokus F1 (0,-c) dan F2 (0,c)
Catatan :
Contoh 1
Tentukan persamaan elips yang berpusat di O(0,0), fokus (-4,0) dan (4,0) dengan sumbu mayor  10 satuan.
Jawab :
Fokus di F1 (-4,0) dan F2 (4,0) maka c = 4 ( fokus pada sumbu x )
Panjang sumbu mayor = 10, maka 2a = 10. Sehingga a = 5
Persamaan elipsnya :
Jadi persamaan elipnya adalah            

Contoh 2
Diketahui persamaan elips , tentukan koordinat titik puncak, koordinat titik fokus, panjang sumbu mayor, sumbu minor, eksentrisitas, persamaan direktriks dan panjang lactus rectum !
Jawab :
Dari persamaan elips , diperoleh a2 = 16, maka a = 4; b2 = 9, maka b = 3.
c2 = a2 - b2 , sehingga c2 = 16 – 9 =7, maka c = .
Dari data diatas diperoleh :
-       Titik puncak (a,0) = (4,0) dan (-a,0)=(-4,0)
-       Titik focus ( -c,0) = (-,0 ) dan ( c,0)=( ,0 )
-       Panjang sumbu mayor = 2a = 2. 4 = 8
-       Panjang sumbu minor = 2b = 2. 3 = 6
-       Eksentrisitas: =
-       Persamaan direktriks :
-       Panjang lactus rectum =

b)      Persamaan elips yang berpusat di P(α,β)
ª     Text Box:  Persamaan elips yang berfokus pada sumbu utama yang terletak pada / sejajar sumbu x,



           
Dengan :
-       Pusat (α,β)
-       Titik fokus di F1 (α-c, β) & F2(α+c, β)
-       Titik puncak (α-a, β) & (α+a, β)
-       Panjang sumbu mayor=2a
-       Panjang sumbu minor=2b
-       Persamaan direktriks
Text Box:





ª     Persamaan elips yang berfokus pada sumbu utama yang terletak pada / sejajar sumbu y,

Dengan :
-       Pusat (α,β)
-       Titik fokus di F1 (α,β-c) & F2(α,β+c)
-       Titik puncak (α,β-a) & (α,β+a)
-       Panjang sumbu mayor=2a
-       Panjang sumbu minor=2b
-       Persamaan direktriks

Contoh 1
Tentukan titik pusat, titik fokus, titik puncak, panjang sumbu mayor dan sumbu minor dari persamaan elips
Jawab :
Nyatakan terlebih dahulu persamaan elips tersebut ke dalam bentuk baku
Dari persamaan diatas diperoleh : α=2, β=1, a2=9 maka a=3, b2=4 maka a=2,

-       Pusat ( α,β )= ( 2,1 )
-       Titik fokus di F1 ( α-c, β )= ( 2 -,1 ) & F2 ( α+c, β )=( 2+,1 )
-       Titik puncak ( α-a, β )=( 2-3,1 ) =( -1,1 ) & ( α+a, β )= ( 2+3,1 )=( 5,1 )
-       Panjang sumbu mayor=2a=2.3=6
-       Panjang sumbu minor=2b=2.2=4


C.  PARABOLA
Parabola adalah tempat kedudukan titik-titik yang jaraknya sama terhadap suatu titik tertentu dan garis tertentu. Titik –tertentu itu disebut titik api ( fokus ) dan garis tertentu itu disebut direktriks.












*    Persamaan Parabola
a)      Persamaan Parabola yang berpuncak di O(0,0) dan fokus F(p,0)










Dari gambar diatas, O(0,0) merupakan puncak parabola, garis g adalah direktriks parabola dengan persamaan direktriks x = -p, F(p,0) merupakan fokus parabola, Sumbu x merupakan sumbu simetri parabola dengan persamaan parabola y = 0 dan CC1 adalah panjang lactus rectum dari parabola.
            Misalkan P(x,y) adalah sembarang titik pada parabola, berdasarkan definisi parabola maka berlaku :
Jarak PF = jarak PQ



Dengan demikian persamaan parabola yang berpuncak di O(0,0) dengan
fokus F( p,0)adalah


Text Box:
 



Catatan :
1.      Jika p > 0 maka parabola terbuka kekanan
2.      Jika p < 0 maka parabola terbuka kekiri.
3.      Dengan : -  Puncak (0,0)
                     -  Fokus F ( p,0 )
                     -  Persamaan direktriks : x = -p
                     -  Persamaan sumbu simetri : y = 0
Persamaan Parabola yang berpuncak di O(0,0) dan fokus F (0,p)
 












Misalkan titik P(x,y) adalah sembarang titik pada parabola, berdasarkan definisi parabola berlaku :
Jarak PF = jarak PQ
Dengan demikian persamaan parabola yang berpuncak di O(0,0) dengan fokus F(0,p)adalah


Text Box:
 



Catatan :
1.      Jika p > 0 maka parabola terbuka keatas.
2.      Jika p < 0 maka parabola terbuka kebawah.
3.      Dengan :    -   Puncak (0,0)
                  -   Fokus F ( 0, p )
                  -   Persamaan direktriks : y = - p
                        -   Persamaan sumbu simetri : x = 0

b)     Persamaan parabola yang berpuncak di A(a,b)


 












Persamaan parabola yang berpuncak di A(a,b)  adalah :
Text Box:



Catatan :
1.      Jika p > 0 maka parabola terbuka kekanan
2.      Jika p < 0 maka parabola terbuka kekiri.
3.      Dengan : -  Puncak (a,b)
-    Fokus F ( p+a , b )
-    Persamaan direktriks : x = - p +  a
-    Persamaan sumbu simetri : y = b

Text Box:


Catatan :
1.      Jika p > 0 maka parabola terbuka keatas.
2.      Jika p < 0 maka parabola terbuka kebawah.
3.      Dengan :  - Puncak (a,b)
 - Fokus F ( a , p + b )
 - Persamaan direktriks : y = - p + b
 - Persamaan sumbu simetri : x = a








Contoh 1.
Tentukan koordinat fokus dan persamaan sumbu simetri, persamaan direktriks dan panjang lactus rectum dari persamaan parabola  !
Jawab :
Diketahui pers. Parabola , dimana persamaan umum parabola adalah . Sehingga diperoleh , maka p = - 2 < 0. Jadi parabola terbuka ke kiri. Dari hasil yang didapat , diperoleh :
-          Fokus parabola di F ( p , 0 ) = ( -2 , 0 )
-          Persamaan direktriks : x = - p = - (-2 ) = 2
-          Persamaan sumbu simetri : y = 0
-          Dari fokus F ( - 2 , 0 ) , x = - 2 , diperoleh , sehingga diperoleh . Jadi koordinat titik-titik ujung lactus rectumnya adalah
-          ( 2 , 4 ) dan ( -2 , - 4 ).Dengan demikian panjang lactus rectumnya adalah 2 . 4 = 8.

Contoh 2
Tentukan persamaanparabola jika titik puncaknya ( 2 , 3 ) dan titik fokusnya ( 6 , 3 ) !
Jawab :
Diketahui titik puncak ( 2 , 3, ) = ( a , b ), maka diperoleh a = 2, b = 3, Titik fokus

p = 4 

 
p + 2 = 6 ,

 
p + a = 6 ,

 

Jadi persamaan parabolanya adalah 

Contoh 3
Tentukan koordinat titik puncak, titik fokus, sumbu simetri dan persamaan direktriks dari persamaan parabola  !
Jawab :
4 p = 4, p = 1
 

a = 1 , b = - 2, dengan demikian diperoleh :
- Titik puncak ( a, b ) = ( 1, -2 )
- Titik fokus F ( p + a , b ) = ( 2, -2 )
- Persamaan direktriks : x = - p = - 1
- Persamaan sumbu simetri : y = b = -2





D. HIPERBOLA
Hiperbola adalah tempat kedudukan titik-titik yang selisih jaraknya terhadap dua titik tertentu adalah tetap. Kedua titik tertentu itu disebut titik focus.




 











Dari gambar diatas, titik O merupakan pusat hiperbola, titik F1 & F2 adalah focus hiperbola, titik puncak ( -a,0) & (a,0), panjang sumbu mayor = 2a dan panjang sumbu minor = 2b.

*    Persamaan Hiperbola
a)      Persamaan Hiperbola yang berpusat di ( 0,0 )
۩       Untuk hiperbola yang berfokus pada sumbu x, persamaan hiperbolanya adalah :
Text Box:

Dengan :
-          Pusat ( 0,0 )
-          Titik fokus F1( -c,0 ) & F2 ( c,0 )
-          Titik puncak ( -a,0 ) & ( a,0 )
-          Panjang sumbu mayor = 2a
-          Panjang sumbu minor = 2b
-          Persamaan asimptot :
-          Persamaan direktriks :
-          Eksentrisitas:
-          Panjang lactus rectum
-         

۩       Untuk hiperbola yang berfokus pada sumbu y, persamaan hiperbolanya adalah :
Text Box:



Dengan :
-          Pusat ( 0,0 )
-          Titik fokus F1( 0,-c ) & F2 ( 0,c )
-          Titik puncak ( 0,-a  ) & ( 0,a )
-          Panjang sumbu mayor = 2a
-          Panjang sumbu minor = 2b
-          Persamaan asimptot :
-          Persamaan direktriks :

Contoh 1 :
 Diketahui persamaan hiperbola  , tentukan :
a.       Koordinat titik puncak
b.      Koordinat titik fokus
c.       Persamaan asimptot
d.      Persamaan direktriks
e.       Eksentrisitas
f.       Panjang lactus rectum
Jawab :
Dari persamaan hiperbola   , diperoleh a2=16, maka a=4 dan a2=9, maka a=3
a.       koordinat titik puncak : ( - a,0 )=( - 4,0) & ( a,0 )=(4,0)
b.      koordinat titik fokus : ( - c, 0 )=( -5,0 ) & ( c,0 )=( 5,0 )
c.       persamaan asimptot :
d.      persamaan direktriks :
e.       eksentrisitas :
f.       panjang lactus rectum




Contoh 2 :
Tentukan persamaan hiperbola yang puncaknya (0,3) & (0,-3) serta fokusnya (0,5) & (0,-5).
Jawab :
Dari puncak (0,3) & (0,-3) diperoleh a=3, dari fokus (0,5) & (0,-5) diperoleh c=5.
Jadi persamaan hiperbolanya adalah

b)     Persamaan hiperbola yang berpusat di P( α,β )
{ Untuk hiperbola yang berfokus pada sumbu utama dan sejajar sumbu x, persamaan hiperbolanya adalah :


Text Box:
 



Dengan :
-          Pusat ( α,β )
-          Titik fokus F1( α - c, β ) & F2 ( α + c, β )
-          Titik puncak ( α - a, β ) & ( α + a, β )
-          Panjang sumbu mayor = 2a
-          Panjang sumbu minor = 2b
-          Persamaan asimptot :
-          Persamaan direktriks :

{ Untuk hiperbola yang berfokus pada sumbu utama dan sejajar sumbu y, persamaan hiperbolanya adalah :
Text Box:   



Dengan :
-          Pusat ( α,β )
-          Titik fokus F1( α , β - c ) & F2 ( α, β + c )
-          Titik puncak ( α , β - a ) & ( α, β + a )
-          Panjang sumbu mayor = 2a
-          Panjang sumbu minor = 2b
-          Persamaan asimptot :
-          Persamaan direktriks :

Contoh 3 :
Diketahui persamaan hiperbola . Tentukan:
a.       koordinat titik pusat
b.      koordinat titik puncak
c.       koordinat titik fokus
d.      persamaan asimptot
e.       persamaan direktriks


Jawab :
Nyatakan terlebih dahulu persamaannya ke dalam bentuk baku
Dari persamaan diatas, diperoleh , a2=9, maka a=3 dan b2=12, maka b=,
a.       Koordinat titik pusat ( α,β )=(-3,3)
b.      Koordinat titik puncak ( α - a, β )=( -3-3, -3 )=( -6,-3 ) & ( α + a, β )=( -3+3,-3 )=(0,-3)
c.       Koordinat titik fokus :  F1( α - c, β )=( -3-,3 ) & F2 ( α + c, β )=( -3+, 3 )
d.      Persamaan asimptot :
e.       Persamaan direktriks :


BAB III
PENUTUP

A.    Kesimpulan
Irisan kerucut adalah lokus dari semua titik yang membentuk kurva dua-dimensi, yang terbentuk oleh irisan sebuah kerucut dengan sebuah bidang. Empat jenis yang dapat terjadi adalah Lingkaran,  Parabola, Elips, dan Hiperbola.
Jika sebuah bidang mengiris kerucut sejajar dengan satu dan hanya satu generator, maka irisannya adalah parabola. Jika bidang pengiris sejajar dengan dua generator, maka irisannya akan memotong kedua kulit dan membentuk sebuah hiperbola. Sebuah elips terjadi jika bidang pengiris tidak sejajar dengan generator mana pun. Lingkaran adalah kasus khusus dari elips, yang terbentuk jika bidang pengiris memotong semua generator dan tegak lurus sumbu kerucut.
Lingkaran didefinisikan sebagai tempat kedudukan atau lokus titik-titik P(x,y) yang jaraknya r sampai suatu titik M yang dinamakan pusat lingkaran adalah sama. Elips adalah tempat kedudukan titik-titik yang jumlah jaraknya terhadap dua titik tertentu adalah tetap, kedua titik tertentu itu disebut titik focus. Parabola adalah tempat kedudukan titik-titik yang jaraknya sama terhadap suatu titik tertentu dan garis tertentu. Titik –tertentu itu disebut titik api ( fokus ) dan garis tertentu itu disebut direktriks. Hiperbola adalah tempat kedudukan titik-titik yang selisih jaraknya terhadap dua titik tertentu adalah tetap, kedua titik tertentu itu disebut titik focus.



DAFTAR PUSTAKA


1.      Purcell, dkk. 2004. Kalkulus jilid 2. Jakarta : Erlangga.
2.      Maman Suherman. 1986. Geometri Analitik Datar. Jakarta : Karunika.
3.      Leithold, dkk. 1993. Kalkulus dan Ilmu Ukur Analitik. Jakarta : Erlangga.



1 comment:

Anonymous said...

Payah bro, banyak yg belum lengkap gambarnya :v

Pencarian isi Blog